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Abstract 

 
This article describes the motion control interface 

for the Coupled Layer Architecture for Robotic 
Autonomy (CLARAty). This interface is used for 
controlling motors and other actuators in rovers and 
manipulators. Its development was initiated to address 
the needs of NASA-supported research projects, while 
the resulting design is general and can be applied to 
other systems. This paper lists and motivates the 
principal requirements for the interface, accumulated 
over more than seven years of the project development 
to date. A design of the motor interface that satisfies 
these requirements is described in detail. The key 
benefits of the design include ease of learning, using 
and maintaining, as well as significant code reuse. 
 
1. Introduction 
 

CLARAty is an object-oriented software infra-
structure for the development and integration of new 
robotics algorithms, primarily for the use on the rovers 
[1]. Its purpose is to provide a common interface to a 
number of heterogeneous robotics platforms. This 
provides several important benefits, including 
simplifying the initial development and reuse of 
robotics algorithms in such areas as machine vision, 
manipulation, navigation, and planning [2]. CLARAty 
currently supports research rover platforms developed 
and used at the Jet Propulsion Laboratory, Ames 
Research Center, Carnegie Mellon University, and the 
University of Minnesota. In this paper, we focus on a 
part of this infrastructure that is responsible for 
designing and executing motions of actuators. Below 
we define the software engineering problem at hand 
and situate this work with regard to the state of the art. 
Further, we describe the requirements of software 
interfaces for motion control, followed by the details 
of a specific design that implements those 
requirements. 
 

1.1. Problem Statement 
 

Here we propose a solution to the problem of 
designing a software interface that requires satisfaction 
of three important properties:  
• supporting and communicating directly with the 

physical embodiments of the controlled actuators 
(referred to as hardware motors), 

• featuring high-efficiency to allow real-time 
execution on physical systems (Figure 1), 

• maximizing software reuse across hardware 
systems and across software applications. 

Designing good software interfaces that completely 
satisfy any one of these requirements is challenging. 
The CLARAty framework requires satisfaction of all 
three, thus making the present endeavor a hard 
problem. Here we propose a software Application 
Programming Interface (API) to motion hardware that 
leverages our experience in this framework and 
addresses the desired design properties. 

 

 
Figure 1. Research prototype rovers contain 
many motors that must be controlled in a 
coordinated fashion. 



1.2. Prior Works 
 

CLARAty has included a motion control interface 
since its inception in 1999. Initial versions of this 
interface were capable [3], but were not flexible 
enough to meet the demands of more advanced 
trajectory generation algorithms. With increased 
demands on rover motion control, fueled in part by the 
latest research in motion planning, it became necessary 
to extend the interface. The extension, presented 
herein, allows increasing the flexibility of using 
motion trajectories, as well as improving the code 
reusability aspects of the software. Similar interface 
development efforts have been done previously in 
CLARAty [4], in particular in the domains of rover 
navigation [5] and image acquisition [2]. This work 
builds on its predecessors, but necessarily differs in 
many ways due to the particulars of interfacing for 
motor control. 

The topic of reusable application programming 
interfaces for robot actuator control has received a fair 
amount of attention. Most architectures emphasized 
some aspects of this topic over others. Functional 
aspects of robotics systems have been studied in [6]. A 
higher-level perspective on robot control was used in 
[7][8]. However, in this work we focused on all 
relevant facets of actuator control, from application 
programmer’s experience using the interface to 
maintainability and efficiency of the code. Some recent 
work in other projects addresses the ease of interfaces 
and code reuse as well [9][10], however our approach 
differs in a number of features and may be a potential 
alternative. We hope that the ideas presented herein 
could serve to encourage the inquiry into good 
programming interfaces to robotics motion control. 
 
2. Requirements of the Motion Control 
Interface 
  

The design of the presented motion control 
interface addresses a number of key requirements. 
Many of these requirements are shared with other 
components of CLARAty, namely camera interfaces 
[2]. Though most of the requirements were eventually 
supported in the final design, some were more 
influential than others. In this section we discuss the 
driving requirements. 

Requirement 1: Convenience of basic 
operations. One of the most important requirements of 
an effective motor API is the convenience and 
simplicity of performing common operations with the 
motors. This is especially important for projects with 
high turn-over rates of developers, such as research 

tasks at educational institutions. Simplicity of the 
interface is also helpful for maintenance and code 
reuse. 

From our experience, the most frequent operations 
include moving the motor: 
• to achieve a motion target (setpoint),  
• to follow a specified trajectory profile. 
These motions are specified in terms of (angular or 
linear) distance, velocity, acceleration or other 
quantities. This requirement states that the user shall be 
able both to specify the above motor motions and to 
execute them on the motor easily, e.g. using only a few 
lines of simple code.  

Requirement 2: Accessibility of low-level 
functionality. Application developers are sometimes 
interested in having fine control over functionality of 
the hardware motors, as this is essential to making 
some algorithms work well. This requirement states 
that the user shall be able to manipulate the full set of 
features of the motor hardware using the interface. The 
user shall be assured that no other part of the interface 
will have any effect on the hardware, while the user 
maintains low-level access to it. 

Requirement 3: Stability of the interface. A large 
variety of motor hardware is being used in robotics, 
and general standards for motor programming have not 
yet been developed. Figure 2 illustrates this variety 
with two particular research prototype rovers at JPL. 
The FIDO rover shown in the figure on the left 
features a centralized hardware architecture. This rover 
performs both trajectory generation and servo control 
functions in software on the main computer. The 
Rocky8 rover on the right uses dedicated 
microcontrollers to perform these motor control 
functions in hardware.  

This requirement states that the motor API shall 
support the presently available motor hardware using 

Figure 2. A comparison of motor control of two 
JPL research prototype rovers: FIDO (left) and 
Rocky8 (right). FIDO performs centralized motor 
control, while Rocky8 features a distributed 
system with dedicated controllers. 



the same basic set of methods. It also shall be able to 
support the likely future variants of it. The interface 
shall be extendible to support future capability without 
major changes. 

Requirement 4: Resource Sharing. Some 
applications require the motor hardware resources to 
be shared among different software processes. For 
example, several programs may require access to a 
particular motor. This requirement states that the motor 
API shall allow two or more separate software 
processes to access and utilize the motor hardware. It 
shall also implement error checking to inform the users 
if the hardware is unavailable due to resource sharing.  

Requirement 5: Synchronization. Many 
algorithms require robot motions to be synchronized in 
time. This is particularly necessary for locomotion, 
advanced maneuvering and manipulator motion. This 
requirement states that the motor API shall allow 
synchronizing the operation of two or more hardware 
motors. The interface shall provide feedback to the 
user regarding the synchronization capability that is 
possible and the quality of synchronization during 
motion. 

 
3. Motion Control Interface Design 
 

In this section we describe our solution to the 
problem of designing an effective motion control 
interface. We will present the major design decisions 
and the features that result from it. We will also note 
the aspects of the design that satisfy the previously 
outlined requirements. 

 
3.1. Motor Class Hierarchy 
 

The first version of the motor API class hierarchy 
in CLARAty featured a base motor class and a derived 
class that specialized the motor to the hardware. While 
this design was very simple, it only allowed for a 
hardware adaptation, but not for a functional 
adaptation.  For example, a joint could not be derived 
from a motor class in this design. To address this 
limitation, we introduced the bridge pattern [11] in the 
second version that separated the functional motor 
abstractions from the implementation abstractions.  
However, this resulted in a significant increase in 
complexity without adding significant flexibility. The 
complexity was caused by the development of parallel 
hierarchies for both motor hardware code and the 
functional motor abstractions. Both hierarchies became 
similarly complex, which effectively doubled the 
complexity of the design. On the other hand, the 
flexibility was still insufficient because adding new 

functionality required modifying both hardware code 
and motor abstractions.  

The third version, presented here, combines the 
simplicity of the first version with some of the features 
of the second version in a simplified class hierarchy, 
shown in Figure 3. Similar to UML notation, arrows in 
the figure indicate inheritance, and diamonds indicate 
containment. 

The generic device class defines a set of member 
functions that represents general functionality of all 
devices. The base class, derived from the generic class 
by simple inheritance, defines a set of member 
functions for performing the common operations of the 
motors. The application code can be written using the 
base class without specifying the motor hardware to be 
used.  

The adaptation class is in turn derived from the 
base class. The principal purpose of this class is to map 
the logical motor operations of the base class to the 
physical motor operations of the hardware class 
(bottom right of the figure). The adaptation class can 
also be useful for storing user settings of the motor. 

The hardware class represents the physical 
hardware, independent of how the architecture intends 
to use it. Hence, it is not constrained by class 
inheritance. Low-level operations of motor hardware 
can be implemented as member functions of the 
hardware class. 

The above class hierarchy forms the foundation of 
the motor interface. The generic and base classes in the 
figure are unique in the API. The adaptation and 
hardware classes are duplicated and tailored to the 
motor hardware. Due to this arrangement, the interface 
is positioned to satisfy the Requirement 2 (accessibility 
of low-level functionality). By eliminating the bridge 
pattern, we traded some flexibility (i.e. limited the 
extendibility of the motor class) for simplicity and 
better maintainability. 
 

Figure 3. Class Hierarchy of the Motor Interface. 



3.2. Motor Properties 
 

The information stored in the motor class can be 
divided into two types: the properties of the motor 
itself and the properties of the motion that it must 
execute. Here we discuss the former, while the next 
section is dedicated to the latter. 

Motor properties are further subdivided into the 
motor model and parameters. The model contains 
information that describes the hardware and therefore 
remains constant across applications. Common 
examples of the motor model information include 
limits on position, velocity and acceleration. Similar to 
general mechanism models [13], the motor model code 
and data can be reused to develop simulations of the 
motors. In our implementation of the motor interface, 
we dedicated a special class to handle the motor model 
information. This approach makes it convenient to 
store and to load the model from a file, as well as to 
share it between copies of the same motor adaptation. 
In developing the motor model class, we attempt to 
include the values that are relevant for most motors, so 
that this class can be reused when controlling various 
motor adaptations. 

Motor parameters, on the other hand, are values 
that can be modified by the application. A common 
example of such parameters is controller gains. The 
meaning of these parameters is typically specific to a 
particular motor adaptation, which makes it difficult to 
create generic collections of motor parameters. 
Implementing particular parameters in motor 
adaptations is the approach we recommend. 

 
3.3. Motor Commands 
 

In this section we describe the second type of motor 
information, the properties of the motion command 
that the motor must execute. Developing a general 
approach to describing motor motions is a challenging 
task because it depends not only on the variety of 
motor hardware, but also on the variety of applications 
and use cases. Here we present the software 
framework that captures most common specifications 
of robot motion. 

From a motor control point of view, the typical 
motor motion commands can be classified according to 
the hierarchy in Figure 4. At the highest level, a motor 
command is classified according to the control mode: 
setpoint or trajectory. Both modes are further 
classified according to the actual quantity being 
commanded: motor position, velocity, torque, etc.  

The setpoint control mode provides the motor with 
an instantaneous target value that the motor will try to 

achieve using its control law (typically using a PID 
controller) without the generation of a trajectory 
profile. An example of this motor command is moving 
N  revolutions as fast as possible. The motor command 
in this example would be classified as setpoint mode 
with control variable of position (i.e. angular position 
of the motor shaft). Optionally, limits on derivatives of 
the control variable can be specified, if they are 
supported by the motor hardware. In our example, by 
specifying a limit on the first derivative, we could 
obtain a velocity-bounded motion. 

In contrast, trajectory control mode refers to a 
motion command that must follow a prescribed 
trajectory profile. The profile also may be represented 
in terms of any control variable supported by the 
motor. This control mode has a number of important 
applications including manipulator control, advanced 
robot locomotion, etc. Coordinated motion of several 
motors can be achieved by computing and executing 
the trajectories that satisfy the time synchronization 
requirements.  

In order to implement the trajectory mode of 
execution, additional features are necessary in the 
motor interface. The methods to represent, generate 
and execute the trajectories are covered below. 
 
3.3.1. Representing Trajectories. Our goal is to 
enable the motor API to handle all types of trajectories 
that are used in robotics applications. This is a 
challenging task, and in our experience the best 
approach to achieving that is to classify the trajectories 
into two categories: 
• simple, where we assume a simplest motion that 

satisfies the specified boundary conditions (also 
referred to as a trapezoidal trajectory), and 

• complex, where we allow the trajectory to have an 
arbitrary profile. 

In our experience, supporting both trajectory types in 
the motor interface has satisfied all desired motor 
motions so far.  

Before we look at both trajectory types in more 
detail, it would be helpful to develop some notation. 

Figure 4. A hierarchy for classifying typical 
motor commands. 



Given a certain control variable of the motor, y, a 
trajectory τ is typically defined as a mapping from time 
t to y, also denoted as τ : t → y [12]. Moreover, since 
we are concerned with motion of physical motors, we 
can make certain assumptions about this mapping. In 
particular, this mapping is a function in mathematical 
terms, since a physical motor cannot have more than 
one value of its control variable y at the same time. 
When discussing trajectories as functions, e.g. y = τ(t), 
we will refer to t as the argument, and y as the function 
value. The argument typically is a value of time, but 
can be another quantity. The function value can be a 
value of any control variable, such as position, 
velocity, torque, etc. 

As suggested above, the term simple trajectory 
denotes a trajectory that is only expected to satisfy 
boundary conditions and does not specify the profile of 
the trajectory itself. The representation of the simple 
trajectory includes only a few parameters: 
• the boundary conditions: 

o the initial and final values of the function 
value (and its derivatives), 

o the initial and final value of the argument; 
• the derivative limits: the allowed ranges of 

variation of the function value and its derivatives. 
In other words, the boundary conditions specify the 
target that the motor must achieve after executing the 
trajectory. The derivative limits specify the allowed 
ranges of values that the function (e.g. position) and its 
derivatives (e.g. velocity) can take on. This can allow 
us to make sure that the velocity of the motor never 
exceeds a certain range. As a side note, the derivative 
limits can be viewed as the model of the system 
performing the action, similar to the way the motor 
model in Section 3.2 described the capabilities of the 
motor.  

Figure 5 shows an example of a simple trajectory, 
where we would like a motor to move N revolutions 
within tf amount of time. The boundary conditions are 
as follows:  
• the initial value of the function y is 0, and its final 

value is N revolutions; 
• the initial and final values of all derivatives of y 

are 0 (the motor begins and finishes the trajectory 
at rest); 

• the initial value of the argument is 0 (always the 
case for relative motions), and its final value is tf. 

 This representation does not specify whether 
velocity and other derivatives of the function remain 
constant during the steady-state part of the motion. 
However, it assumes that they do, based on practical 
considerations. Also note that in this example, the 
second derivative (acceleration) is discontinuous, 

hence the third derivative (jerk) is unbounded. If 
necessary, we can use the same representation to 
bound the third derivative and represent a smoother 
motion. 

As we have seen, a simple (trapezoidal) trajectory 
can be represented by only a few parameters. A 
complex trajectory, however, cannot benefit from this 
compactness, because it must prescribe the value of the 
function at every value of the argument. In order to 
represent the complex trajectories, we rely on a related 
software framework in CLARAty, referred to as Math 
Function API. Similar to the general motor interface 
that is the object of this paper, Math Function API is a 
general framework for representing and using any 
mathematical function.  

The class hierarchy of the Math Function 
framework is shown in Figure 6. Math Function API 
supports common types of functions, including 
polynomial and trigonometric functions (e.g. 
Sine_Function and others), as well as sampled 
functions (a discrete set of values, capable of 
representing an arbitrary sampled function). The 
framework supports concatenating individual instances 
of Math Function classes into a piecewise function. 
The composite pattern [11] is utilized to ensure that an 
instance of the piecewise function class can be used as 
any other math function as well. The features of the 
Math Function classes include not only evaluating the 
functions they represent, but also computing their 
derivatives and integrals. 

Thus, the task of representing the complex 
trajectories is handled by the Math Function 
framework, specifically designed to represent arbitrary 
functions. This relationship is well aligned with other 
approaches of code reuse in CLARAty. 

Figure 5. An example of a simple trajectory 
that achieves N motor revolutions in time tf. 
Top: the trajectory in terms of angular 
position; bottom: the corresponding 
(trapezoidal) trajectory in terms of velocity.  



 
 3.3.2. Generating Trajectories. Now that we have 
developed the methods for representing both types of 
motor trajectories, we will discuss how they can be 
generated. Trajectory generation refers to finding the 
complete specification of the trajectory, given its 
boundary conditions. In the case of the example of the 
trapezoidal trajectory in Section 3.3.1, trajectory 
generation would involve finding the times t1 and t2 of 
the transitions from ramp-up to plateau and from 
plateau to ramp-down, respectively. In case of the 
complex trajectory, the generation would involve 
computing all values that represent it. For example, in 
case of a piecewise polynomial function, this would 
include the coefficients of all the polynomials 
involved. In the general case of the sampled function, 
this would involve computing all of its samples. 

The generation of most practical simple 
(trapezoidal) trajectories is straight-forward and can be 
done in closed-form. However, since the complex 
trajectories can be arbitrary, their generation can be 
arbitrarily difficult. For example, some trajectory 
generation algorithms could involve iterative gradient 
descent methods or parametric optimal control. In 
order to preserve the uniformity of the motion 
representation part of the motor interface in light of 
these differences, we decided to separate trajectory 
generation from the representation of trajectories 
themselves. Thus, trajectory generators are separate 
software elements in CLARAty, widely ranging in 
complexity. However, the communication between 
them and the motor interface occurs via the easy-to-use 
trajectory representations, described in Section 3.1.1. 
This approach allows the trajectories to be light-weight 
both in terms of storage and meaning. In turn, this 
facilitates learning and maintenance of the motor 
interface. 
 
3.3.3. Executing Trajectories. As was mentioned in 
Section 2 and illustrated in Figure 2, there is a large 
variation in motor hardware in robotics. This variation 

is especially relevant for executing trajectories. In 
order to enable the motor interface to be general and 
re-usable for a variety of motor hardware, we must 
build generality into the method of executing 
trajectories. This is the essence of the Requirement 3, 
and our method achieves this requirement by placing 
the specifics of trajectory execution into the hardware-
specific code, namely the adaptation and hardware 
classes in Figure 3. Thus, the application code is able to 
manage abstract representations of trajectories only 
and pass them directly to the hardware-specific code 
for execution. 

Algorithm 1 is a code example that demonstrates 
the simplicity of setting up a motor and commanding 
its motion. The lines 1 and 2 setup the hardware motor 
class and its logical adaptation, respectively. Line 3 
sets the motor in setpoint control mode, the default 
control variable is angular position. Line 4 specifies 
the motion by 1 radian, and line 5 enacts the motion. 
Separating setting up the motion and enacting it (lines 
4 and 5) enables better error handling: the function 
start() executes only if there were no errors with 
commanding the motion. Line 6 blocks until motor 
finished executing the previous trajectory. The motor 
is set to the trajectory mode in line 7, and the following 
line provides the residual value of the constructor of 
Trapezoidal_Trajectory (containing the representation 
of a simple trajectory type) as the trajectory to follow. 
The single argument means the goal of angular 
distance 1.0, and the remaining parameters are set at 
defaults, obtained from the motor model. Finally, line 
9 executes the trajectory. This example illustrates how 
our motor interface satisfies the Requirement 1. The 
simplicity of performing this typical motor operation 
was enabled by the motor class hierarchy of choice and 
crystallizing the particulars of motor control in a few 
intuitive parameters. 

One of the typical differences in motor hardware is 
the method of enacting motor motion. Some motor 
controllers implement certain common trajectory types 
in hardware. Other motors, including the motors in the 

Figure 6. Class hierarchy of the Math 
Functions software framework, used for 
representing complex trajectories. 

1. X_Hw_Motor hw_motor(parameters) 
2. X_Motor motor(hw_motor) 
3. motor.set_control_mode(SETPOINT_CONTROL) 
4. motor.set_setpoint(1.0) 
5. motor.start() 
6. motor.wait_until_done() 
7. motor.set_control_mode(TRAJECTORY_CONTROL)
8. motor.set_trajectory(Trapezoidal_Trajectory(1.0)) 
9. motor.start() 

Algorithm 1. Using the motor interface to 
setup a motor and command motions. 



JPL FIDO rover, are controlled in software and cannot 
benefit from hardware-generated trajectories. 
Therefore, the motor adaptation classes must include 
the logic to translate the representations of trajectories 
from Section 3.3.1 into executable motor commands. 
In the case of software motors, this would include 
invoking the trajectory generation code to compute 
trajectory parameters in software, as was alluded to in 
Section 3.3.2. 
 
3.4. Motor Groups 
 

In order to enable synchronization of motors and to 
satisfy the Requirement 5, we propose a special class 
hierarchy, Motor_Group (Figure 3, left), that parallels 
the motor hierarchy (Figure 3, center). While the 
Motor classes represent a single motor device, the 
Motor_Group represents an arbitrary number of 
motors. It also contains additional functionality to 
command and execute the motion of its motors in a 
coordinated fashion. The Motor_Group inherits from 
the Device_Group class due to many similarities 
between the motors and other devices in CLARAty, 
including cameras [2].  

The Motor_Group inherits member functions to 
append and remove Motors from the container. The 
template function, for_each, supplies a way for some 
member functions of Motor to be called for every 
motor in the group. This allows, for example, setting 
control mode of each motor to the same value in one 
line of code. The Motor_Group class also supplies new 
member functions that allow synchronized motions by 
all motors in the group. Algorithm 2 demonstrates how 
a group of motors can be used for coordinated motion. 
Lines 1-5 set up the motor group, consisting of two 
motors. Line 6 uses the for_each method to set all 
motors in the group to trajectory control mode. Line 7 
sets up trajectories for each motor in the group, where 
the order of arguments corresponds to the order of 
appending motors to the group. The motor group 

automatically ensures that the motors begin and end 
motion at the same time, as fast as motors allow. Line 
8 initiates the motion. 

Thus, common operations with motor groups are 
greatly simplified by the motor interface. Commanding 
synchronized motions is nearly as straight-forward as 
commanding individual motors. The proposed API 
framework allows intuitive naming and structure of the 
relevant interface commands. 
 
3.5. Motor Resource Sharing 
 

Enabling sharing the motor resources between non-
cooperating software processes (satisfying the 
Requirement 4) is one of the most challenging aspects 
of designing the motion control interface. As suggested 
above, there are two general types of operations in 
using the motors: 
• setting and querying motor parameters and 

motion, 
• commanding the specified motion to start.  
The problems due to resource sharing, including 
deadlock and starvation, are caused by errors in 
providing access to processes to perform either action. 
These problems are addressed by separating logical 
and physical motors, as shown in Figure 3. Further, we 
establish a rule that no more than one physical motor 
object must exist for any motor in the system. This 
object is shared among all threads.  

Similar to the CLARAty camera interface [2], a 
hardware motor class is responsible for getting/setting 
the parameters of the physical device, commanding 
and executing a motion.  It also assists in 
implementing a locking mechanism which allows a 
logical motor to block any other logical motor from 
setting motor parameters or commanding a motion.  

In contrast, a logical motor represents the user's 
view of the motor. Multiple instances of the logical 
motor may exist in the system. Parameter settings 
made in one logical motor are cached locally and do 
not affect the state of another logical motor, even if 
both refer to the same piece of motor hardware. The 
member function of the logical motor that starts 
execution of a motion affects an atomic operation 
which both sets the physical motor parameters to 
match the user's view of the motor state and starts 
executing the motion. Using this interface, the user 
does not need to write any special code to maintain 
task safety: thanks to the motor interface, the code 
written for single-threaded operation will operate 
correctly if the motor resource is shared between 
multiple threads [2] as long as the motor adaptation is 
implemented in a thread safe manner. 

1. X_Hw_Motor hw_motor1(parameters) 
2. X_Hw_Motor hw_motor2(parameters) 
3. X_Motor motor1(hw_motor1) 
4. X_Motor motor2(hw_motor2) 
5. X_Motor_Group motor_grp(motor1, motor2) 
6. motor_grp.for_each(set_control_mode, 
                                            TRAJECTORY_CONTROL) 
7. motor_grp.set_trajectory(Trapezoidal_Trajectory(1.0),
                                           Trapezoidal_Trajectory(2.0)) 
8. motor_grp.start() 

Algorithm 2. Using the motor interface to setup 
a motor group for coordinated motions. 



4. Conclusions and Future Work 
 

The presented motion control interface was 
implemented and tested on research prototype rovers at 
JPL. Figure 7 shows an example of the FIDO rover 
executing a maneuver amid dense obstacles using the 
motor interface. The interface made it easy to program 
the coordinated motion of 12 steering and drive motors 
of the rover’s mobility system, as well as the precision 
motions of pan and tilt joints in its mast. 

Figure 7. FIDO rover executes a maneuver 
using the motor interface. 

We presented an approach to developing a motion 
control API that maximizes the effectiveness of 
learning, usage and maintenance. This interface is 
likely to be helpful for applications that feature high 
developer turn-over rates and pursue code reuse. In 
future work, we plan to continue extending this 
interface to new robotics platforms intended for both 
space and terrestrial robotics research.  
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